
GOES-R Ground System: Planning for Updates to Level 2 Algorithms

ALGORITHM SPECIAL STUDY
Post-Launch Testing (PLT) of GOES-16 has just started and will

include validation of the products from the baseline algorithms.

Once this is completed, algorithm updates and new algorithms are

expected to be incorporated into the Ground System.

This Algorithm Special Study focused on optimizing

the update process with the following topics:

• Algorithm Black-Box Integration

• Metadata Aggregation

• Memory/CPU Footprint

• Algorithm Configuration Database

• Cal/Val Scripts Automation

This study completed in December 2016.

The first 3 topics are summarized on this poster.

The final report gives suggestions for Work Requests

and cost / schedule estimates for future algorithm upgrade tasks.

A. O. Schutte III1, R. Kaiser1, T. Scott Zaccheo2, P. A. Van Rompay3, E. J. Kennelly2, H. E. Snell2, W. Wolf4, S. Sampson4 , M. Wilson1 1Harris Corp., Melbourne, FL
2AER, Inc., Lexington, MA
3AER, Inc., Greenbelt, MD
4NOAA STAR, College Park, MD

The Data Fabric holds, indexes, and provides all algorithm data: inputs,

configuration, outputs. These diagrams show CPU Utilization after

prototyping Data Fabric segmentation, where each segment holds a

subset of data, organized by query name (e.g. starting with A-D in 1

segment, E-H in another, etc). The average decrease was by a factor

of 10, a significant improvement. A Work Request is planned.

5 other options were considered but not analyzed further for this study.

METADATA AGGREGATION (OMAS)

Algorithm
Algorithm
Algorithm BLM

OMAS PLM

Template

Parallel execution in blocks Scene output

The current Operational Metadata Aggregation Service (OMAS) uses

customized computation components, directly interfacing with the

algorithm C++ Block-Level Metadata (BLM) objects.

From the Special Study, the recommended upgrade is to create a

“Generic OMAS” service which reads XML BLMs and uses an XSLT

stylesheet to aggregate the metadata into Product-Level Metadata

(PLM). The XML BLMs can be generated by adapting the existing DMI

serializer used by all algorithms for their output products. Common

metadata like time fields can also be included in this “Generic OMAS”.

A prototype for this Special Study was tested on typical statistics: min,

max, mean, std. dev. This is an example for computing the mean:

<values><xsl:value-of select="sum(to_avg) div

sum(to_avg_over)"/></values>

2 other options were considered but not analyzed further for this study.

(XSLT = eXtensible Stylesheet Language Transformations)

ALGORITHM BLACK-BOX INTEGRATION

GOES-R Operationalized Algorithm Service (OAS)

C-binding/Translation

Algorithm
(GFP Source)

Data Fabric

Queries

Publishes

DMI C++

Shell
Input Blocks

Output Blocks

Data Fabric

Future: Data Fabric

Algorithm Bridge Service (ABS)

Algorithm
(GFP Exe)

Input

Stager

Output

Stager

2-Day Store

Storage

Data Fabric NetCDF Adapter (DaNA)

Modified NetCDF Lib.

C-binding/Translation

Algorithm
(GFP Source)

DaNA Config

OpenDAP
JNI

Data Fabric

An alternative to rewriting scientific code from an Algorithm Working

Group (AWG) algorithm into the GOES-R Ground System is to wrap the

scientific code and treat it as a “Black Box”: inputs are passed in, the

AWG code runs the computations, and outputs come out.

Black-box integration was prototyped using 2 AWG Fortran algorithms:

• Parallax Correction (precedent to GOES-R Rainfall Rate Algorithm)

• Bayesian Cloud Mask (probability-based cloud detection)

3 approaches were prototyped, as shown below.

The OAS approach uses the current GOES-R Ground System:

Algorithm Shell, Data Model Interface (DMI), and existing infrastructure.

The Algorithm Shell converts DMI inputs to Fortran structures and

passes them into the Fortran algorithm using C-binding. The outputs

are passed back and converted, then written using the DMI. See AMS

Poster 246 for details, along with testing using Algorithm WorkBench.

The ABS approach uses the GFP executable, generated using the AWG

infrastructure, calling it from the command line. Inputs are staged as

NetCDF files, which the executable directly reads and uses to generate

its output files. Breaking the scene into blocks is determined by the

executable, along with product formatting, and common science code.

The DaNA approach uses the same GFP code as the OAS approach,

with C-bindings for Fortran data and algorithm execution. This

approach leverages the GFP use of NetCDF internally. OpenDAP is

used to provide inputs, and the Java Native Interface (JNI) to the Data

Fabric is used for outputs.

MEMORY / CPU FOOTPRINT

CONCLUSION

The Algorithm Special Study provides techniques

to reduce lifecycle costs that can be developed

during PLT and promoted to the Ground System

during the first round of algorithm updates. All L2

products require updates to match current AWG

science algorithms. Two update tools: wrapping

AWG algorithms, improving metadata generation.

1/10 CPU Utilization

Time

P
e
rc

e
n

t

0

100

P
e
rc

e
n

t

100

0
Time

0.0 1.0

Bayesian Cloud Mask Probabilities Bayesian 4-Level Cloud Mask

Clear Prob. Clear Prob. Cloudy Cloudy

170 320 K

Parallax-Corrected Band 14 BT

* Presenting

